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Abstract

As an application of Bézout’s theorem from algebraic geometry, we
show that the standard notion of a trigonometric polynomial does not
agree with a more naive, but reasonable notion of trigonometric polyno-
mial.

Mathematicians generally accept (see [1,5]) that the term trigonometric poly-
nomial refers to a function f(t) € C*°(R,C) which can be expressed in the
following form,

k k
fit) = Z ap cos(nt) + Z by, sin(nt)
n=0 n=1

for some nonnegative integer k£ and complex numbers ag, . .., ax, b1, ..., b € C.
Trigonometric polynomials and their series counterparts, the Fourier series,
play an important role in many areas of pure and applied mathematics and are
likely to be quite familiar to the reader. When reflecting on the terminology,
however, it is reasonable to wonder why the term trigonometric polynomial is
not reserved for a function g(t) of the form,

k k
g(t) = Z ay, cos™ (t) + Z B sin™(t)
n=0 n=1

for some nonnegative integer k and complex numbers «y, . .., ag, 51,..., 8k € C.
In this article, we shall refer to these as naive trigonometric polynomials.

It is clear that each of these sets of trigonometric polynomials form a sub-
space of C°(R,C), but at first glance it isn’t obvious that these two subspaces
are in fact distinct. An exercise in trigonometric identities, however, shows that
any naive trigonometric polynomial can be written as a (standard) trigonometric
polynomial. We leave the straightforward details to the reader.

Proposition 1. Any naive trigonometric polynomial can be written as a (stan-
dard) trigonometric polynomial.

What is curious (and perhaps less clear) is that not all trigonometric poly-
nomials can be written as naive trigonometric polynomials. It is known that
cos(nt) = Ty, (cost) where T, is the n-th Chebyshev polynomial of the first kind,



and thus cos(nt) is expressible as a naive trigonometric polynomial. For the
sine terms, one has the identity sin(nt) = (sint) - U,,—1(cost) where U, is the
(n — 1)-st Chebyshev polynomial of the second kind. Both T, (x) and U, (z) are
polynomials of degree n which are even or odd functions according as n is even
or odd. It follows that sin((2k + 1)t) can be expressed as a naive trigonometric
polynomial as well. For the definition and properties of the Chebyshev polyno-
mials, see [4]. Thus, the resolution of our problem is reduced to showing that
polynomials of the form sin(2kt) cannot be expressed as naive trigonometric
polynomials. Without too much work, one can provide an elementary argument
substantiating this claim and we invite the interested reader to produce one.
Our goal here is to prove this fact as an application of the celebrated theorem
of Bézout from algebraic geometry. The following version of Bézout’s theo-
rem is suitable for our needs and follows as an immediate consequence of the
usual statement of Bézout’s theorem which involves zero sets of homogeneous
polynomials in the complex projective plane CP? (see [2,3,6]).

Theorem 2 (Bézout’s theorem (weak form)). Let p(z,y), q(z,y) € Clz,y]
be complex polynomials of degree m, n with ged{p,q} = 1. The number of
intersection points in C% of the two curves p(x,y) = 0, q(x,y) = 0 is at most
mn.

Proposition 3. The function sin(2kt) cannot be represented as a naive trigono-
metric polynomial.

Our proof of Proposition 3 uses the following lemma, which states that poly-
nomial relations between cos(t) and sin(t) are all consequences of the Pythagorean
identity cos?(t) + sin®(t) = 1. For p(z,y) € Clz,y], we let (p(z,y)) denote the
ideal generated by p(z,y).

Lemma 4. Let R(z,y) € Clz,y]. Then R(cos(t),sin(t)) =0 for every t € R if
and only if R(z,y) € (332 +y? - 1),

Proof. If R(z,y) € (2® +y? — 1) then clearly R(cos(t),sin(t)) = 0. Conversely,
suppose that R(cos(t),sin(t)) is identically zero and suppose that R(z,y) ¢
(22492 —1). Since 22 +y? —1 is irreducible, by Bézout’s theorem, it follows that
the number of intersection points of the curves R(z,y) =0 and 2? +y?> —1 =10
is at most 2 - deg(R). This implies that cos(t) and sin(¢) take on only finitely
many values as t ranges over all real numbers, an obvious contradiction. O

Remark 5. As pointed out by the referee, a nice alternate proof of lemma 4 using
algebraic geometry is to apply Hilbert’s Nullstellensatz (see, for example, [2,3]).
Namely, our hypothesis implies that R(z,y) vanishes on the affine variety defined
by the ideal (w2+y2—1). The Nullstellensatz then implies that R" € (x2+y2—1)
for some natural number r. Thus, 22 + y? — 1 divides R" and irreducibility of
22 +y? — 1 further implies that 22 + y? — 1 divides R(z,y).

We are now ready to prove Proposition 3.



Proof of Proposition 3. Suppose that there are single-variable complex polyno-
mials P, @ such that sin(2kt) = P(cos(t)) + Q(sin(¢)) for all ¢ € R. Using the
identity sin(2kt) = (sint) - Uag—1(cost) we deduce that (sint) - Usg_1(cost) =
P(cos(t))+Q(sin(t)). From Lemma 4, it follows that Us,_1(z)y— P(z) —Q(y) €
(m2 +9% - 1). That is, there is a polynomial S(z,y) such that

Use—1(z)y — P(x) — Q(y) = S(xay)($2 + yz -1).

Let 2%y” be any monomial of S. If a > 0 then the right-hand side has a
term 2%y>*t# which is not matched by any term on the left-hand side. So every
monomial of S has the form y?. However, if § > 0, then the right-side term
22y” is not matched on the left side since Uy, _1 () is an odd polynomial. Thus,
S(x,y) is reduced to a constant which is clearly impossible. O

Remark 6. Observe that the argument of Lemma 4 can be applied to show
that any pair of functions f(t), g(t), each with a range of infinite cardinality,
can satisfy essentially at most one polynomial relation. Thus, for example, any
polynomial relation of z = cosh(t) and y = sinh(¢) must be a consequence of
22 —y? =1.

Since we have now shown that the space of naive trigonometric polynomials
is a proper subspace of the trigonometric polynomials, we’d like to briefly look
at the size of this proper subspace. It turns out that the space of naive trigono-
metric polynomials is quite small in the following sense. Let L?(S') denote the
Hilbert space of square integrable, complex-valued functions on the circle with
inner product (f,g) = [*_f(t)g(t)dt. It is well known that L?(S') is the clo-
sure of the space of trigonometric polynomials and that every function in L?(S?!)
can be expressed as an L?-convergent Fourier series [5]. Let N C L?(S') be
the subspace of all naive trigonometric polynomials. Let the closure of N be
denoted by cl(N). The next proposition shows that N has infinite codimension
in L2(S1).

Proposition 7. The collection of functions {sin(2t),sin(4t), sin(6t),...} C cl(N)=.
In particular, unlike the trigonometric polynomials, the naive trigonometric
polynomials are not dense in L?(S'). Moreover, dim cl(N)+ = occ.

Proof. Let k be a positive integer. As mentioned earlier, sin(2kt) = Uay_1(cost) sint
where Usi—1(x) is the (2k — 1)-st Chebyshev polynomial of the second kind. We
will show that sin(2kt) is orthogonal to N. Since the collection {1,sin"(¢), cos™(t)},
for all n € N, form a spanning set for N, it suffices to show that sin(2kt) is orthog-
onal to each function of this spanning set. Since the function sin(2kt) cos™(t) is
odd we have

(sin(2kt), cos™(t)) = / sin(2kt) cos™ tdt = 0.

It remains to show that (sin(2kt),sin"(¢)) = 0. Since Uzi_1(z) is an odd function
of degree 2k —1, we may write Uy _1(cost) = P(cos? t) cost for some polynomial



P(z). Thus,

(sin(2kt), sin" (£)) = / " sin(2kt) sin™ (1) dt / " Ui 1 (cos(t)) sin(t) sin™ (1) dt

—Tr —Tr
s

= /Tr P(cos(t)) sin" 1 (t) cos(t) dt = / P(1 —sin?(t)) sin™ (t) cos(t) dt = 0.

—T —T

The last equality follows from the substitution w = sin(¢). Bilinearity of the
inner product implies that sin(2kt) is orthogonal to the subspace N. Continuity
of the inner product implies sin(2kt) € cl(N)+. Since sin(2kt) and sin(2lt)
are mutually orthogonal for k # I, we see that cl(N)* contains the infinite-
dimensional subspace spanned by {sin(2t), sin(4t), sin(6t),...}. O
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